112 research outputs found

    Two-Dimensional Freeform Reflector Design with a Scattering Surface

    Get PDF
    We combine two-dimensional freeform reflector design with a scattering surface modelled using microfacets, i.e., small specular surfaces representing surface roughness. The model results in a convolution integral for the scattered light intensity distribution, which yields an inverse specular problem after deconvolution. Thus, the shape of a reflector with a scattering surface may be computed using deconvolution, followed by solving the typical inverse problem of specular reflector design

    An inverse method for color uniformity in white LED spotlights

    Get PDF
    Color over Angle (CoA) variation in the light output of white phosphor-converted LEDs is a common problem in LED lighting technology. In this article we propose an inverse method to design an optical element that eliminates the color variation for a point light source. The method in this article is an improved version of an earlier method by the same authors, and provides more design freedom than the original method. We derive a mathematical model for color mixing in a collimator and present a numerical algorithm to solve it. We verify the results using Monte-Carlo ray tracing

    An Entropic Optimal Transport Numerical Approach to the Reflector Problem

    Get PDF
    The point source far field reflector design problem is one of the main classic optimal transport problems with a non-euclidean displacement cost [Wang, 2004] [Glimm and Oliker, 2003]. This work describes the use of Entropic Optimal Transport and the associated Sinkhorn algorithm [Cuturi, 2013] to solve it numerically. As the reflector modelling is based on the Kantorovich potentials , several questions arise. First, on the convergence of the discrete entropic approximation and here we follow the recent work of [Berman, 2017] and in particular the imposed discretization requirements therein. Secondly, the correction of the Entropic bias induced by the Entropic OT, as discussed in particular in [Ramdas et al., 2017] [Genevay et al., 2018] [Feydy et al., 2018], is another important tool to achieve reasonable results. The paper reviews the necessary mathematical and numerical tools needed to produce and discuss the obtained numerical results. We find that Sinkhorn algorithm may be adapted, at least in simple academic cases, to the resolution of the far field reflector problem. Sinkhorn canonical extension to continuous potentials is needed to generate continuous reflector approximations. The use of Sinkhorn divergences [Feydy et al., 2018] is useful to mitigate the entropic bias

    Enhanced Secrecy in Optical Communication using Speckle from Multiple Scattering Layers

    Get PDF
    We study the secrecy of an optical communication system with two scattering layers, to hide both the sender and receiver, by measuring the correlation of the intermediate speckle generated between the two layers. The binary message is modulated as spatially shaped wavefronts, and the high number of transmission modes of the scattering layers allows for many uncorrelated incident wavefronts to send the same message, making it difficult for an attacker to intercept or decode the message and thus increasing secrecy. We collect 50,000 intermediate speckle patterns and analyze their correlation distribution using Kolmogorov-Smirnov (K-S) test. We search for further correlations using the K-Means and Hierarchical unsupervised classification algorithms. We find no correlation between the intermediate speckle and the message, suggesting a person-in-the-middle attack is not possible. This method is compatible with any digital encryption method and is applicable for codifications in optical wireless communication (OWC)

    Computing aberration coefficients for plane-symmetric reflective systems: A Lie algebraic approach

    Get PDF
    We apply the Lie algebraic method to reflecting optical systems with plane-symmetric freeform mirrors. Using analytical ray-tracing equations we construct an optical map. The expansion of this map gives us the aberration coefficients in terms of initial ray coordinates. The Lie algebraic method is applied to treat aberrations up to arbitrary order. The presented method provides a systematic and rigorous approach to the derivation, treatment and composition of aberrations in plane-symmetric systems. We give the results for second- and third-order aberrations and apply them to three single-mirror examples

    Focusing light through a free-form scattering medium

    Get PDF
    Imaging and transport light through scattering opaque media is a hot topic pursued in multiple fields, ranging from nanotechnology to life sciences. A promising technique to do this is wavefront shaping (WFS), where the light propagation through a scattering medium is controlled by interference [1][2]. Recently, the potential of WFS was even extended to, for instance, time-varying samples [3][4]. In most cases to date, WFS has been done on the quintessential scattering sample geometry, namely in slabs. Real-world applications, however, require samples to have any shape – “free-form scattering optics” – that defies current theories. Here, we present the study of an opaque sample of TiO2 particles suspended in silicone. Exploiting the flexibility of silicone, we are able to modify the geometry of the sample and measure the enhancement of the intensity η in a point of the speckle pattern. Using this opportunity, we compare the performance of a flat and a free form sample. These experimental measurements will be compared with a newly formulated theory of light transport in free form scattering media

    Point Source Regularization of the Finite Source Reflector Problem

    Get PDF
    International audienceWe address the “freeform optics” inverse problem of designing a reflector surface mapping a prescribed source distribution of light to a prescribed far field distribution, for a finite light source. When the finite source reduces to a point source, the light source distribution has support only on the optics ray directions. In this setting the inverse problem is well posed for arbitrary source and target probability distributions. It can be recast as an Optimal Transportation problem and has been studied both mathematically and nu-merically. We are not aware of any similar mathematical formulation in the finite source case: i.e. the source has an “´etendue” with support both in space and directions. We propose to leverage the well-posed variational formulation of the point source problem to build a smooth parameterization of the reflec-tor and the reflection map. Under this parameterization we can construct a smooth loss/misfit function to optimize for the best solution in this class of reflectors. Both steps, the parameterization and the loss, are related to Optimal Transportation distances. We also take advantage of recent progress in the numerical approximation and resolution of these mathematical objects to perform a numerical study

    An ADER discontinuous Galerkin method on moving meshes for Liouville's equation of geometrical optics

    Get PDF
    Liouville's equation describes light propagation through an optical system. It governs the evolution of an energy distribution on phase space. This energy distribution is discontinuous across optical interfaces. Curved optical interfaces manifest themselves as moving boundaries on phase space. In this paper, an ADER discontinuous Galerkin (DG) method on a moving mesh is applied to solve Liouville's equation. In the ADER approach a temporal Taylor series is computed by replacing temporal derivatives with spatial derivatives using the Cauchy-Kovalewski procedure. The result is a fully discrete explicit scheme of arbitrary high order of accuracy. A moving mesh is not sufficient to be able to solve Liouville's equation numerically for the optical systems considered in this article. To that end, we combine the scheme with a new method we refer to as sub-cell interface method. When dealing with optical interfaces in phase space, non-local boundary conditions arise. These are incorporated in the DG method in an energy-preserving manner. Numerical experiments validate energy-preservation up to machine precision and show the high order of accuracy. Furthermore, the DG method is compared to quasi-Monte Carlo ray tracing for two examples showing that the DG method yields better accuracy in the same amount of computational time.</p

    An Iterative Least-Squares Method for the Hyperbolic Monge-Amp\`ere Equation with Transport Boundary Condition

    Full text link
    A least-squares method for solving the hyperbolic Monge-Amp\`ere equation with transport boundary condition is introduced. The method relies on an iterative procedure for the gradient of the solution, the so-called mapping. By formulating error functionals for the interior domain, the boundary, both separately and as linear combination, three minimization problems are solved iteratively to compute the mapping. After convergence, a fourth minimization problem, to compute the solution of the Monge-Amp\`ere equation, is solved. The approach is based on a least-squares method for the elliptic Monge-Amp\`ere equation by Prins et al., and is improved upon by the addition of analytical solutions for the minimization on the interior domain and by the introduction of two new boundary methods. Lastly, the iterative method is tested on a variety of examples. It is shown that, when the iterative method converges, second-order global convergence as function of the spatial discretization is obtained.Comment: 30 pages, 24 figure

    Reports about 8 selected benchmark cases of model hierarchies : Deliverable number: D5.1 - Version 0.1

    Get PDF
    Based on the multitude of industrial applications, benchmarks for model hierarchies will be created that will form a basis for the interdisciplinary research and for the training programme. These will be equipped with publically available data and will be used for training in modelling, model testing, reduced order modelling, error estimation, efficiency optimization in algorithmic approaches, and testing of the generated MSO/MOR software. The present document includes the description about the selection of (at least) eight benchmark cases of model hierarchies.EC/H2020/765374/EU/Reduced Order Modelling, Simulation and Optimization of Coupled Systems/ROMSO
    corecore